KLASIFIKASI PENYAKIT JANTUNG MENGGUNAKAN PENDEKATAN HYBRID IINFORMATION GAIN dan BACKPROPAGATION NEURAL NETWORK (BPNN)

##plugins.themes.academic_pro.article.main##

Azis Wahyudi
Haryo Nugroho
Harinto Nur Seha
Rina Yulida

Abstrak

Penyakit jantung merupakan penyebab utama kematian di seluruh dunia. Untuk mendeteksi risiko penyakit jantung secara dini, dibutuhkan metode klasifikasi yang akurat dan efisien. Penelitian ini mengusulkan pendekatan hybrid dengan menggabungkan seleksi fitur Information Gain (IG) dan algoritma klasifikasi Backpropagation Neural Network (BPNN). Dataset yang digunakan adalah Heart Disease dari UCI Repository dengan total 303 data pasien. Sebanyak 8 fitur terbaik dipilih menggunakan Information Gain. Model BPNN dilatih menggunakan parameter hidden_layer_sizes=(16, 8), activation='relu', dan learning_rate_init=0.01. Hidden layer dengan 16 dan 8 neuron memungkinkan jaringan mempelajari pola kompleks, ReLU mempercepat konvergensi pelatihan, dan learning rate mengatur kecepatan pembaruan bobot. Hasil evaluasi menunjukkan model mencapai akurasi 79.12%, presisi 84.44%, recall 76.00%, F1-Score 80.00%, dan AUC 85.95%. Validasi silang 5-Fold menghasilkan rata-rata akurasi 82.15%. Hasil ini menunjukkan bahwa pendekatan IG + BPNN memberikan performa klasifikasi yang baik dan stabil dalam mendeteksi penyakit jantung.

##plugins.themes.academic_pro.article.details##

Referensi

  1. World Health Organization (WHO). Cardiovascular diseases (CVDs) – Key facts. Geneva: WHO; 2021. [Online]. Tersedia di: https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds)
  2. Deo, R. C. (2015). Machine Learning in Medicine. Circulation, 132(20), 1920–1930. https://doi.org/10.1161/CIRCULATIONAHA.115.001593
  3. Alsharif, M. H., Alsharif, Y. H., & Kim, J. (2020). Artificial Intelligence–Based Heart Disease Prediction System Using Backpropagation Neural Network and Genetic Algorithm. Journal of Healthcare Engineering, 2020, Article ID 1406143. https://doi.org/10.1155/2020/1406143
  4. Detrano, R. et al. (1989). International application of a new probability algorithm for the diagnosis of coronary artery disease. The American Journal of Cardiology, 64(5), 304–310. https://doi.org/10.1016/0002-9149(89)90524-9
  5. Han, J., Kamber, M., & Pei, J. (2012). Data Mining: Concepts and Techniques (3rd ed.). San Francisco: Morgan Kaufmann.
  6. Miao, Y., & Niu, X. (2016). A Survey on Feature Selection. Procedia Computer Science, 91, 919–926. https://doi.org/10.1016/j.procs.2016.07.258
  7. Karthik, R., Menaka, R., & Priya, P. (2019). Heart Disease Prediction Using Backpropagation Neural Network and Feature Selection Technique. International Journal of Engineering and Advanced Technology (IJEAT), 8(5), 426–430.
  8. Kaur, H., & Wasan, S. K. (2006). Empirical Study on Applications of Data Mining Techniques in Healthcare. Journal of Computer Science, 2(2), 194–200. https://doi.org/10.3844/jcssp.2006.194.200
  9. Sitaula, C., & Aryal, S. (2018). Heart Disease Classification: A Deep Learning Approach. 2018 International Conference on Computing, Electronics & Communications Engineering (iCCECE), 219–224. https://doi.org/10.1109/iCCECE.2018.8658722
  10. Setiawan, R., Nugroho, H. A., & Wicaksono, A. F. (2017). Feature Selection Using Information Gain for Heart Disease Classification. International Journal of Computer Applications, 170(8), 10–14. https://doi.org/10.5120/ijca2017914788
  11. Iswanto, M. I. (2020). Klasifikasi Penyakit Jantung Menggunakan Metode Artificial Neural Network (ANN). Jurnal Teknologi Informasi dan Ilmu Komputer (JTIIK), 7(5), 987–993.
  12. Srivastava, S., & Srivastava, A. (2020). Comparative Analysis of Machine Learning Algorithms for Heart Disease Prediction. Procedia Computer Science, 167, 1910–1917. https://doi.org/10.1016/j.procs.2020.03.210
  13. Yuvaraj, N., & Yuvaraj, M. (2021). Heart Disease Diagnosis Using Hybrid Machine Learning Model. Materials Today: Proceedings, 45, 3702–3706. https://doi.org/10.1016/j.matpr.2021.01.122
  14. Dey, N., Ashour, A. S., & Balas, V. E. (2018). Smart Medical Data Sensing and IoT Systems Design in Healthcare. Springer.
  15. Zhang, Y., Wang, S., & Phillips, P. (2014). Binary PSO with mutation operator for feature selection using decision tree applied to spam detection. Knowledge-Based Systems, 64, 22–31. https://doi.org/10.1016/j.knosys.2014.03.005